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1 Sequences and Series of Functions: Uniform Convergence and
Power Series

1.1 Uniform Convergence of Sequences

Definition 1.1 (Pointwise Convergence). Let E be a nonempty subset of R. A sequence of functions
fn : E → R is said to converge pointwise on E, as n→∞, iff for every ε > 0 and x ∈ E there is an N ∈ N
(which may depend on x as well as ε) such that

n ≥ N =⇒ |fn(x)− f(x)| < ε.

Remark 1.2. pointwise convergence does not necessarily guarantee preservation of continuity, integration
or Differentiability:

• Continuity and differentiability example: fn(x) = xn and set f(x) =

{
0 0 ≤ x < 1
1 x = 1

• differentiable fn and f but not equal limits: fn = xn/n and f(x) = 0. Then f ′n(x) = xn−1 = 1 when
x = 1 but f ′(1) = 0.

• integrable: fn(x) =

{
1, x = p/m ∈ Q,m ≤ n
0 otherwise

and f(x) =

{
1, x ∈ Q
0 otherwise

Definition 1.3 (Uniform Convergence). Let E ⊆ R, nonempty. A sequence of functions fn : E → R is said
to converge uniformly on E to a function f iff for every ε > 0 there is an N ∈ N such that

n ≥ N =⇒ |fn(x)− f(x)| < ε

for all x ∈ E.

Example 1.4. Prove that xn → 0 uniformly on [0, b] < 1, and pointwise, but not uniformly on [0, 1)

Proof. xn → 0 pointwise on [0, 1) by the following. For x ∈ [0, 1), the sequence xn is monotone decreasing,
as x < 1 =⇒ xn+1 < xn. Further, it is bounded below by 0. So, by monotone convergence theorem, this
sequence has a limit. To find this limit, consider

xn+1 = x · xn

=⇒ lim
n→∞

xn+1 = x lim
n→∞

xn

=⇒ L = xL =⇒ x = 1 (contradiction), or L = 0.

1



To prove xn does not converge uniformly on [0, 1), suppose it does. Then given 1/2 > ε > 0, there exists
N ∈ N such that |xN | < ε for all x. But xN → 1 as x→ 1, so we can always choose an x0 ∈ (0, 1) such that
xN0 > ε, which is a contradiction.

To prove that it converges uniformly on [0, b], b < 1, let b < 1, and take ε > 0. Then choose N ∈ N such
that n ≥ N implies bn < ε. Then x ∈ [0, b] =⇒ |xn| ≤ bn < ε.

Theorem 1.5. Uniform Convergence preserves continuity. Formally, let E ⊆ R, nonempty, and let fn → f
uniformly on E as n→∞. If each fn is continuous at some x0 ∈ E, then f is also continuous at x0.

Proof. We know that, for all ε > 0,∃N ∈ N such that ∀n ≥ N , |f(x)− fn(x)| < ε/3 for all x. We also know
that ∀ε > 0, for each x0 there exists a δ > 0 such that |x − x0| < δ =⇒ |fn(x) − fn(x0)| < ε/3. Consider
that, given |x− x0| < δ,

|f(x)− f(x0)| = |f(x)− fn(x) + fn(x)− fn(x0) + fn(x0)− f(x0)|
≤ |f(x)− fn(x)|+ |fn(x)− fn(x0)|+ |fn(x0)− f(x0)|

< ε/3 + ε/3 + ε/3 = ε.

Theorem 1.6. Uniform convergence preserves integration. Formally, suppose fn → f uniformly on a closed
interval [a,b]. If each fn is integrable on [a,b], then so is f and

lim
n→∞

∫ b

a

fn(x)dx =

∫ b

a

lim
n→∞

fn(x)dx =

∫ b

a

f(x)dx

Proof. By the next Theorem, f is bounded on [a, b]. To prove that f is integrable, let ε > 0 and choose
N ∈ N such that

n ≥ N =⇒ |f(x)− fn(x)| < ε

3(b− a)

for all x ∈ [a, b]. Using this equality for n = N , by the definition of upper and lower sums,

U(f − fn, P ) ≤ max(f − fn)(b− a) ≤ ε(b− a)

3(b− a)
≤ ε/3

and

L(f − fn, P ) ≥ min(f − fn)(b− a) ≥ − ε(b− a)

3(b− a)
≥ −ε/3

for any partition P of [a, b]. Since fN is integrable, choose a partition P such that

U(fn, P )− L(fn, P ) < ε/3.

It follows that

U(f, P )− L(f, P ) ≤ U(f − fn, P ) + U(fn, P )− L(fn, P )− (f − fn, P ) < ε/3 + ε/3 + ε/3 = ε

that is, f is integrable on [a, b]. Then∣∣∣∣∫ x

a

fn(t)dt−
∫ x

a

f(t)dt

∣∣∣∣ ≤ ∫ x

a

|fn(t)− f(t)|dt ≤ ε(x− a)

3(b− a)
< ε

for all x ∈ [a, b] and n ≥ N .
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Definition 1.7. A sequence of functions (fn) is uniformly bounded on a set E iff there is an M > 0 such
that fn(x) ≤M for all x ∈ E, and all n ∈ N.

Theorem 1.8. Suppose for each n ∈ N, fn : E → R is bounded. If fn → f uniformly on E, as n → ∞,
then (fn) is uniformly bounded on E and f is a bounded function on E

Proof. We will first prove f is a bounded function on E. As fn → f uniformly, on E, as n → ∞, ∃N ∈ N
such that ∀n ≥ N ,

|fn(x)− f(x)| ≤ 1

for all x ∈ E.

Consider when n = 1, 2, ...N . Each fn is bounded by assumption. Take the maximum of the set of
minimum upper bounds from each fn, M . Then for all n, 1 ≤ n ≤ N , |fn| ≤M . Combining these two facts,
by the triangle inequality,

|f(x) = |f(x)− fN (x) + fN (x)| ≤ |f(x)− fN (x)|+ |fN (x)| ≤ 1 +M.

So, f is bounded. Now we wish to show that (fn) is uniformly bounded. Consider n ≥ N :

|fn(x)| ≤ |fn(x)− f(x) + f(x)| ≤ |fn(x)− f(x)|+ |f(x)| ≤ 1 + (1 +M) = 2 +M

So, (fn) is uniformly bounded.

Note: if fn → f and gn → g uniformly, then fn + gn → f + g uniformly and fngn → fg uniformly.

Lemma 1.9 (Uniform Cauchy Criterion). Let E be a nonempty subset of R and let fn : E → R be a
sequence of functions. Then fn converges uniformly on E iff for every ε > 0, there exists an N ∈ N such that

n,m ≥ N =⇒ |fn(x)− fm(x)| < ε

for all x ∈ E.

Proof. Suppose fn → f uniformly on E as n→∞. Let ε > 0 and choose N ∈ N such that

n ≥ N =⇒ |fn(x)− f(x)| < ε/2

for all x ∈ E. Then |fn(x)− fm(x)| ≤ |fn(x)− f(x)|+ |f(x)− fm(x)| < ε/2 + ε/2 = ε.

Now suppose that fn is Cauchy for each x ∈ E. By Cauchy’s theorem of sequences fn is pointwise
convergent, that is,

f(x) = lim
m→∞

fm(x)

exists for each x ∈ E. So,

lim
m→∞

|fn − fm(x)| ≤ lim
m→∞

ε/2 =⇒ |fn(x)− f(x)| < ε.

Important: Uniformly convergent implies Cauchy, but Cauchy does not imply uniformly convergent!
Unless you are working with a complete metric space (more on that later).

Useful Proposition:

Proposition 1.10. The following are equivalent for a sequence of functions fn : E → R and f : E → R:

• fn → f uniformly on E.

• supx∈E |fn(x)− f(x)| → 0 as n→∞

• there exists a convergent sequence an > 0 such that |fn(x)− f(x)| ≤ an for all x ∈ E.
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1.2 Uniform Convergence of Series

Definition 1.11. Let fk be a sequence of functions defined on some set E and set

Sn(x) :=

n∑
k=1

fk(x)

for x ∈ E,n ∈ N.

i) The series
∑n
k=1 fk(x) is said to converge pointwise on E iff the sequence Sn converges pointwise on

E as n→∞.

ii) The series
∑n
k=1 fk(x) is said to converge uniformly on E iff the sequence Sn converges uniformly on

E as n→∞.

iii) The series
∑n
k=1 fk(x) is said to converge absolutely (pointwise) iff

∑n
k=1 |fk(x)| converges pointwise

for each x ∈ E.

Theorem 1.12. Let E ⊆ R, nonempty, and let (fk) be a sequence of real functions defined on E.

i) Suppose that x0 ∈ E and that each fk is continuous at x0 ∈ E. If f =
∑n
k=1 fk(x) converges uniformly

on E, then f is continuous at x0 ∈ E.

ii) Suppose that E = [a, b], and that fk is integrable on [a, b]. If f =
∑n
k=1 fk(x) converges uniformly on

[a, b], then f is integrable on [a, b] and∫ b

a

n∑
k=1

fk(x) =

n∑
k=1

∫ b

a

fk(x).

iii) Suppose E is a bounded, open interval and that each fk is differentiable on E. If
∑n
k=1 fk(x) converges

at some x0 ∈ E, and
∑n
k=1 f

′
k(x) converges uniformly on E, then f =

∑n
k=1 fk(x) converges uniformly

on E, f is differentiable on E and (
n∑
k=1

fk(x)

)′
=

n∑
k=1

f ′k(x)

for all x ∈ E.

Proof. These follow simply by the uniform convergence properties of sequences.

Theorem 1.13 (Weierstrass M-test). Let E ⊆ R, nonempty, let fk : E → R, and suppose that Mk ≥ 0
satisfies

∑∞
k=1Mk < ∞. if |fk(x)| ≤ Mk for k ∈ N and x ∈ E, then

∑∞
k=1 fk(x) converges absolutely and

uniformly on E.

Proof. Let ε > 0. Every convergent sequence is Cauchy, and so we can choose m ≥ n ≥ N such that∑m
k=n < ε. Then ∣∣∣∣∣

m∑
k=n

fk(x)

∣∣∣∣∣ ≤
m∑
k=n

|fk(x)| ≤
m∑
k=n

Mk < ε

Thus, the partial sums of
∑∞
k=1 fk and

∑∞
k=1 |fk| are uniformly Cauchy, and therefore by the Cauchy

Criterion they are uniformly and absolutely convergent.

Theorem 1.14 (Dirichlet’s Test for Uniform Convergence). Let E ⊆ R, nonempty, and suppose that
fk, gk : E → R, k ∈ N. If ∣∣∣∣∣

n∑
k=1

fk(x)

∣∣∣∣∣ ≤M <∞

for n ∈ N and x ∈ E, and if gk ↓ 0 uniformly on E as k →∞¡ then
∑∞
k=1 fkgk converges uniformly on E.
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1.3 Power Series

Definition 1.15. A power series is a series of the form
∞∑
n=0

an(x − c)n. We call an the coefficients of the

power series, and c the centre of the power series.

Example 1.16. Deduce where the power series
∑
n n

n|x|n is convergent.

Proof. The sequence nn|x|n very quickly becomes unbounded: As soon as n ≥ 2/|x|, we have that nn|x|n >
2n. So the only place where this sequence can converge is when x = 0.

Example 1.17. Deduce where the power series
∑
n x

n/n! is convergent.

Proof. By the ratio test, the sum converges absolutely for all x (has infinite radius).

Exercise 1.18. If (anr
n) is bounded and 0 ≤ s ≤ r, then (ans

n) is bounded.

Proof. By definition of boundedness, ∃M ∈ R such that |anrn| ≤ M for all n ∈ N. But 0 ≤ s ≤ r, so
|ansn| ≤ |anrn| ≤M for all n ∈ N, and so (ans

n) is bounded.

Exercise 1.19. If (anr
n) is unbounded and r < s, then (ans

n) is unbounded.

Proof. ∀k ∈ R, ∃nk ∈ N such that |ank
rnk > k. But s > r, so |ank

snk | > |ank
rnk | > k. So (ans

n) is
unbounded.

Definition 1.20. The radius of convergence R of a power series
∞∑
n=0

an(x− c)n is given by

R := sup{r ≥ 0 | (anr
n)isbounded}

• r < R =⇒ (anr
n) is bounded.

• r > R =⇒ (anr
n) is unbounded.

Theorem 1.21. Suppose the radius of convergence R of a power series satisfies 0 < R <∞. If |x− c| < r,
then the power series converges absolutely. If |x− c| > R, the power series diverges.

Proof. Let us first suppose that |x − c| < R. Consider a number ρ such that |x − c| < ρ < R. Then the
sequence (anρ

n) is bounded, say |anρn| ≤ K for all n. Then

|an||x− c|n = |an|
(
|x− c|
ρ

)n
ρn =

(
|x− c|
ρ

)n
|an|ρn ≤ K

(
|x− c|
ρ

)n
and the geometric series

∑(
|x−c|
ρ

)n
converges as |x−c|ρ < 1. So by comparison,

∞∑
n=0

an(x − c)n converges

absolutely for such x, and therefore converges for all x.

Lemma 1.22. If R = 0, then the power series converges only at x = c (trivial), and if R = ∞ then the
power series converges for all x ∈ R.

Lemma 1.23. i) if lim
n→∞

∣∣∣ an
an+1

∣∣∣ exists, then it is equal to R.

ii) if lim
n→∞

|an|−1/n
exists, then it is equal to R.
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Theorem 1.24. Assume R > 0. Suppose that 0 < r < R. Then the power series with radius R converges
uniformly and absolutely on |x− c| ≤ r to a continuous function f :

f(x) =

∞∑
n=0

an(x− c)n

defines a continuous function f : (c−R, c+R)→ R.

Proof. We have already seen the absolute convergence. With the same notation as before, we have that
(forr < ρ < R):

|an||x− c|n ≤ K
(
r

ρ

)n
:= Mn

for all x with |x− c| ≤ r. Since
∑
Mn converges, by the Weierstrass M -test the sum converges uniformly on

[c− r, c+ r]. Since each an(x− c)n is a continuous function, so is the limiting function f : [c− r, c+ r]→ R.
Since r < R is arbitrary, f is defined and continuous on (c−R, c+R).

Lemma 1.25. The two power series
∑∞
n=1 an(x− c)n and

∑∞
n=1 nan(x− c)n−1 have the same R.

Proof. Let the radii of convergence be R1 and R2 respectively. Since |anrn| ≤ |nanrn| for n ≥ 1, R2 ≤ R1.
Now suppose for contradiction’s sake thatR2 < R1. Then we can choose a ρ and r such thatR2 < ρ < r < R1,
and such that (anr

n) is bounded, say |anrn| ≤ K for all n. Then

|nanρn| = |anrn| × n(ρ/r)n ≤ K × n(ρ/r)n.

The sequence n(ρ/r)n converges to 0 as ρ < r, and therefore (nanρ
n) is also bounded. This contradicts the

definition of R2 and so R1 = R2.

Theorem 1.26. Suppose the radius of convergence of a power series is R. Then

f(x) =

∞∑
n=0

an(x− c)n

is infinitely differentiable on |x− c| < R, and for such x,

f ′(x) =

∞∑
n=0

nan(x− c)n−1

and the series converges absolutely and uniformly on [c− r, c+ r] for any r < R. Moreover, an = f(n)

n! .

Proof. Consider the series
∑∞
n=0 nan(x−c)n−1 which has radius of convergence R and so converges uniformly

on [c − r, c + r] for any r < R. Since nan(x − c)n−1 is the derivative of an(x − c)n, and since the series∑∞
n=0 an(x−c)n converges at at least one point, f ′(x) =

∑∞
n=0 nan(x−c)n−1. The term follows by repeated

differentiation.

The Exponential Function

The power series given by
∑∞
n=0

xn

n! converges for all x, i.e. has R =∞. Let

E(x) :=

∞∑
n=0

xn

n!

Then E converges absolutely for all x and uniformly on any closed, bounded interval [−r, r] to the infinitely
differentiable function that satisfies:

E′(x) =

∞∑
n=0

nxn−1

(n− 1)!
=

∞∑
n=0

xn

n!
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Proposition 1.27. The power series E(x) satisfies the following properties:

• E′(x) = E(x) for all x

• E(x)E(−x) = 1 for all x

• E(x) > 0 for all x

• E(x+ y) = E(x)E(y)

• E(−x) = E(x)−1

• E(kx) = E(x)k for k ∈ N,Q

• E(x/k) = E(x)1/k for k ∈ N

• E(q) = E(1)q for all q ∈ Q

Definition 1.28 (Analytic Function). We say that a function is analytic when it possesses a power series
expansion. That is, f is analytic on {x | |x − c| < r} if there is a power series which converges to f on
{x | |x− c| < r}. Analytic functions are infinitely differentiable on {x | |x− c| < r}, and the coefficients of

the power series are uniquely determined by an = f(n)(c)
n! .

A function is analytic on {x | |x− c| < r} iff

f(x)−
n∑
j=0

f (j)(c)(x− c)j

j!
→ 0

as n→∞ for all x, |x− c| < r.

Example 1.29. Prove that the function f(x) = e
−1

x2 for x 6= 0 and f(0) = 0 does not admit a power series
expansion (is not analytic).

Proof. For a function to admit a power series expansion, it must be analytic. Consider that ∀j, f is j times

differentiable and there exist polynomials qj such that f (j)(x) = e
−1

x2 qj(1/x) for x 6= 0 and f (j)(0) = 0.
Consider

Rn+1f(x, 0) =
f (n+1)(ξ)xn+1

(n+ 1)!

But f (n+1)(ξ) 6 →0 when x 6= 0 by the above, and so the only time Rn+1f(x, 0) → 0 is when x = 0. So,
Rn+1f(x, 0) 6 →0 as n→∞ for all x ∈ (−r, r), and so f is not analytic.

7



2 Integration of Functions f : R→ R

Riemann Integration

Definition 2.1 (Characteristic Functions). If E ⊆ R, we define its characteristic function χE : R → R
by

χE =

{
1 x ∈ E
0 x /∈ E

Let I be a bounded interval. Then
∫
χI = length(I).

Definition 2.2 (Step Functions). We say that φ : R → R is a step function if there exist real numbers
x0 < x1 < ... < xn for some n ∈ N such that

1. φ(x) = 0 for x < x0 and x > xn.

2. φ(x) is constant on (xj−1, xj) for 1 ≤ j ≤ n.

We can write φ(x) =
n∑
j=1

cjχ(xj−1,xj)(x).

Proposition 2.3. The class of step functions forms a vector space.

Proof. Let φ and ψ be step functions and a and b real numbers. Then we can write φ(x) =
∑n
j=1 cjχ(xj−1,xj)(x)

with respect to points X = {x0, ..., xn} and ψ(x) =
∑n
j=1 djχ(xj−1,xj)(x) with respect to points Y = {y0, ...y}.

Then consider that both φ and ψ are step functions with respect to Z = X ∪ Y . Let m = n+ k. Then

1. Definitiely φ+ ψ is zero outside z0 and zm, as both functions are separately zero outside of these two
values.

2. φ+ψ is constant on (zj−1, zj) for all j: this is true as the interval (zj−1, zj) ⊂ (xj−1, xj) and (zj−1, zj) ⊂
(yj−1, yj), where the functions are constant. The sum of two constants is constant.

Clearly max{φ, ψ} and min{φ, ψ} are also step functions, and so is φψ.

Proposition 2.4. If φ and ψ are step functions and a, b ∈ R, then∫
aφ+ bψ = a

∫
φ+ b

∫
ψ.

Proposition 2.5. If φ and ψ are step functions and φ ≥ ψ, then∫
φ ≥

∫
ψ.

Definition 2.6. Let f : R → R. We say a function f is Riemann integrable if for every ε > 0 there exist
step functions φ and ψ such that φ ≤ f ≤ ψ and

∫
ψ −

∫
φ < ε

Proposition 2.7. If f is Riemann integrable, then f is bounded and has bounded support.
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3 Metric Topology of Euclidean Spaces

Definition 3.1. (Simmons) Let X be a non-empty set. Then a metric on X is a real function d of ordered
pairs of elements in X, d : X ×X → R+, such that the following conditions hold:

1. d(x, y) ≥ 0 (the codomain of d is non-negative)

2. d(x, y) = d(y, x) (d is symmetric)

3. d(x, y) = 0 ⇐⇒ x = y

4. d(x, y) ≤ d(x, z) + d(z, y) (the triangle inequality holds for d), for all x, y, z ∈ X.

We define a metric space to be a set X with a metric d on X. We denote the metric space by (X, d).

3.1 Examples

Example 3.2. A common metric used in R is the following:

d(x, y) = |x− y| (1)

where, of course, |x− y| is the absolute value of x− y. That is,

|x− y| = max{(x− y),−(x− y)}. (2)

We will prove that this is a metric in R:

Proof. 1. Of course, |x− y| ≥ 0 ∀ x, y ∈ R, this is trivial.

2. Note that |x− y| = max{(x− y),−(x− y)} = max{−(y − x), (y − x)} = |y − x|.

3. (⇒) If |x − y| = 0, then either x − y = 0, or y − x = 0. In either case, x = y. (⇐) If x = y, then
x− y = 0 so |x− y| = 0.

4. We wish to show that |x− y| ≤ |x− z|+ |z − y|:
Consider that

(|x+ y|)2
=|x+ y||x+ y| = |(x+ y)(x+ y)|

⇒ (|x+ y|)2
=|x2 + 2xy + y2| ≤ |x|2 + 2|x||y|+ |y|2 = (|x|+ |y|)2

⇒ (|x+ y|)2 ≤ (|x|+ |y|)2

and as |x+ y| ≥ 0 and |x|+ |y| ≥ 0 ∀x, y,∈ R,

⇒ |x+ y| ≤ |x|+ |y|.

This is a version of the triangle inequality. We have that |x − y| = |x − z + z − y|, so, applying the
above, |x− y| ≤ |x− z|+ |z − y|, as required. Hence, d(x, y) = |x− y| is a metric on R.

Example 3.3. Let X be any arbitrary set. We define the discrete metric on X to be:

d(x, y) =

{
0 x = y
1 x 6= y

To prove that this is a metric, consider the following:
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Proof. 1. Clearly, d(x, y) ≥ 0 for all x, y in X.

2. If x = y then y = x, and similarly, if x 6= y then y 6= x. Hence, d(x, y) = d(y, x). This is trivial.

3. By definition x = y ⇐⇒ d(x, y) = 0.

4. Consider that d(x, y), d(x, z), and d(z, y) are all either 0 or 1. So, it is easy to see that regardless,
the triangle inequality will hold. The only possible place where the triangle inequality may not hold
is when d(x, y) = 1 and d(x, z) = d(z, y) = 0. Suppose that it does not hold. By definition x = z and
z = y so x = y, which is a contradiction. The rest of the cases are trivial, and so the triangle inequality
holds for all values x, y, z.

Example 3.4. Let Rn denote the n-dimensional Euclidean vector space with elements x = (x1, ..., xn),
(xi ∈ R), and let

|x| =

√√√√ n∑
i=1

xi2 ≥ 0

The usual or Euclidean metric defined on the space Rn is given by:

d(x, y) = |x− y|.

To prove that this is a metric, consider the following:

Proof. 1. By definition, d(x, y) ≥ 0.

2. |x− y| =
√∑n

i=1 (xi − yi)2
=
√∑n

i=1 (yi − xi)2
= |y − x|.

3. Suppose x = y. Then |x − y| =
√∑n

i=1 (xi − yi)2
=
√∑n

i=1 (xi − xi)2
= 0. Conversely, suppose√∑n

i=1 (xi − yi)2
= 0. As squares are always non-negative, xi = yi for all i = 1, ..., n and so x = y.

4. Take any x, y, z ∈ Rn. Let xi − yi = ri, yi − zi = si, and all summations be over i = 1, ..., n. Then we
wish to prove that: (∑

(ri + si)
2
)1/2

≤
(∑

r2
i

)1/2

+
(∑

s2
i

)1/2

.

As both sides are non-negative, this is equivalent to proving the square of both sides, that is:∑
r2
i +

∑
s2
i + 2

∑
risi ≤

∑
r2
i +

∑
s2
i + 2

(∑
r2
i

)1/2 (∑
s2
i

)1/2

.

Simplifying, this is just the Cauchy-Schwarz Inequality:

n∑
i=1

(risi) ≤

√√√√( n∑
i=1

r2
i

)√√√√( n∑
i=1

s2
i

)
(3)

Cauchy-Schwarz Inequality Proof:
We will prove 3 by induction. Let P (n) be the above statement. P (1) obvious, as√√√√( 1∑

i=1

r2
i

)√√√√( 1∑
i=1

s2
i

)
= risi =

1∑
i=1

(risi).
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To prove P (2), observe that

r1s1 + r2s2 ≤
√
r2
1 + r2

2

√
s2

1 + s2
2

⇐⇒ (r1s1 + r2s2)2 ≤ (r2
1 + r2

2)(s2
1 + s2

2)

⇐⇒ r2
1s

2
1 + 2r1s1r2s2 + r2

2s
2
2 ≤ r2

1s
2
1 + r2

1s
2
2 + r2

2s
2
1 + r2

2s
2
2

⇐⇒ 0 ≤ r2
1s

2
2 − 2r1s1r2s2 + r2

2s
2
1

⇐⇒ 0 ≤ (r1s2 − r2s1)2

Which is true. Hence P (2) holds.

Assume that P (n) is true. Then,

n∑
i=1

(risi) ≤

√√√√( n∑
i=1

r2
i

)√√√√( n∑
i=1

s2
i

)

⇒
n∑
i=1

(risi) + (rn+1sn+1) =

n+1∑
i=1

(risi) ≤

√√√√( n∑
i=1

r2
i

)√√√√( n∑
i=1

s2
i

)
+ (rn+1sn+1)

But by P (2),√√√√( n∑
i=1

r2
i

)√√√√( n∑
i=1

s2
i

)
+ (rn+1sn+1) ≤

√√√√( n∑
i=1

r2
i

)
+ r2

n+1

√√√√( n∑
i=1

s2
i

)
+ s2

n+1

⇒

√√√√( n∑
i=1

r2
i

)√√√√( n∑
i=1

s2
i

)
+ (rn+1sn+1) ≤

√√√√(n+1∑
i=1

r2
i

)√√√√(n+1∑
i=1

s2
i

)

Hence, we have that
n+1∑
i=1

(risi) ≤

√√√√(n+1∑
i=1

r2
i

)√√√√(n+1∑
i=1

s2
i

)
And so P (n+ 1) holds whenever P (n) holds .

Thus, the triangle inequality holds for all x, y, z ∈ Rn.

3.2 Open and Closed Sets in Metric Spaces

3.2.1 Open Sets

We first define an open ball, and hence an open set:

Definition 3.5. Let (X, d) be a metric space. If x0 is a point of (X, d) and r is a positive real number, then
the open ball Br(x0) with centre x0 and radius r is the subset of X defined by

Br(x0) := {x ∈ X | d(x, x0) < r} (4)

A subset G of the metric space (X, d) is called an open set if and only if, given any point x in G, there
exists a positive real number r such that Br(x) ⊆ G.
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Proposition 3.6. In any metric space X, each open ball is an open set.

Proof. Let Br(x0) be an open ball in X. Take any x in Br(x0). We wish to prove that there exists an r1

such that Br1(x) ⊆ Br(x0). Consider that, for any x ∈ Br(x0), d(x, x0) < r. So, take r1 = r − d(x, x0),
a positive real number. Then, for any y ∈ Br1(x), d(y, x) < r1, and by the triangle inequality d(y, x0) ≤
d(y, x) + d(x, x0) < r1 + d(x, x0) = (r − d(x, x0)) + d(x, x0) = r. That is, d(y, x0) < r, and so y ∈ Br(x0).
Hence, as y is arbitrary, Br1(x) ⊆ Br(x0), and thus the open ball Br(x0) is an open set.

There are several important properties of open sets with respect to metric spaces:

Proposition 3.7. Let (X, d) be a metric space. Then the empty set ∅ and the full space X are open sets.

Proof. Let us first prove that the empty set ∅ is open. Note that ∅ ⊂ X. We can call ∅ open if we can show
that for any point in ∅, there exists a positive real number r such that Br(x) ⊆ ∅. But of course, there are
no points in the empty set, so this condition automatically holds. To prove that X, the full space, is open,
consider that the full space contains every possible open ball in X. Hence, for all x in X, there exists an
open ball Br(x) ⊆ X. Hence X is open.

Proposition 3.8. The intersection of any finite collection of open sets in a metric space X is open in X.

Proof. Let U and V be open sets in a metric space X. Then by definition, there exist positive real numbers
r1 and r2 such that Br1(x) ⊆ U and Br2(x) ⊆ V for all u ∈ U , v ∈ V . Now take any x ∈ U ∩ V . Then
we have that there exist positive real numbers r1 and r2 such that Br1(x) ⊆ U ∩ V and Sr2(x) ⊆ U ∩ V .
Take r = min{r1, r2}. Then we have that Br(x) ⊆ U ∩ V (It may be useful to remember that both of these
open balls are centred on x). Hence, the intersection U ∩V of two open sets U ,V , is also open. It follows by
induction that the intersection of a finite number of open sets is also open.

Proposition 3.9. The union of any arbitrary collection of open sets in a metric space X is also open in X.

Proof. Let x ∈ ∪i∈IUi, with {Ui} a (possibly infinite) collection of open sets. Then x is an interior point
(refer to Definition 3.13) of some Uk and there is an open ball centred on x contained in Uk by definition of
open sets. This ball is therefore contained in ∪i∈IUi, and as x is arbitrary the union is open. Note that this
proof does not rely on the assumption that the union is finite.

Remark 3.10. Note that Proposition 3.8 only applies to finite intersections, not infinite intersections.
The following counterexample demonstrates this.

Example 3.11. Take the metric space R under the usual metric. Consider the open sets given by (− 1
n ,

1
n ).

The infinite intersection of these intervals is the singleton {0}, which is not open. If it were true that singleton
sets were open, then as every set can be written as an arbitrary union of singleton sets, by Proposition 3.9
the set [0, 1) would be open. It is, of course, not open, as there is no r > 0 such that Br(0) ⊆ [0, 1).

The following is quite useful to know:

Theorem 3.12. Let X be a metric space. A subset G of X is open ⇐⇒ it is a union of open balls.

Proof. Let X be a metric space. We will first prove the forwards implication and then the backwards
implication:
⇒: Suppose we have a subset G of X, and that G is open. Then, by definition, for every point x in G, there
exists an open ball centred on x of radius r such that x ∈ Br(x) ⊆ G. Then, as for each x in G there is an
open ball containing x, then we can write G as the union of all the open balls Br(x) for each x. That is, if
G is open, then G is a union of open balls.
⇐: We already know by Proposition 3.6 that an open ball is an open set, and so by Proposition 3.9, the
union of open balls is open. So, if G is a union of open balls, then G is open.
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A fairly useful concept is the interior of a subset U :

Definition 3.13. Let X be a metric space and U ⊆ X. A point x ∈ U is said to be an interior point of U
if there exists a positive real number r > 0 such that the ball centred at x with radius r is a subset of U ,
that is, Br(x) ⊆ U . The interior of U refers to the set of all interior points of U , and is denoted int(U).

Remark 3.14. The interior of a subset, int(U), is always open.

Proof. We have that for each x ∈ int(U), there exists an r > 0 such that Br(x) ⊆ int(U). So we can write
the interior of U as the union of open balls. By Theorem 3.12, it follows that int(U) is open.

Example 3.15. Equipped with the usual metric, the following examples help to visualise open balls in
certain metric spaces:

1. In R, Br(x0) = (x0 − r, x0 + r).

2. In R2, Br(x0) is the interior (refer to Definition 3.13) of a disc of radius r.

3. In R3, Br(x0) is the interior (refer to Definition 3.13) of a sphere of radius r.

Note that Br(x0) depends in general on the metric, d, as well as the underlying set.

Definition 3.16. Let X be a metric space and U ⊆ X. A point x ∈ U is said to be a boundary point of
U if for every positive real number r > 0 we have that there exists points a, b ∈ Br(x) such that a ∈ U and
b ∈ U ′. The boundary of U refers to the set of all boundary points of U , and is denoted ∂U .

3.2.2 Closed Sets

Definition 3.17. Let X be a metric space. A subset A of X is closed ⇐⇒ its complement A′ is open.

This is equivalent to the following definition:

Definition 3.18. A subset A of the metric space X is called a closed set if it contains each of its limit
points.

where limit points are defined to be the following:

Definition 3.19. If A is a subset of X, a point x in X is called a limit point of A if each open centred on
x contains at least one point of A different from x.

To prove that these two definitions of closed sets are equivalent, consider the following:

Proof. Suppose that A is closed. Then A′ is open. Also suppose x is a limit point of A. Then if x /∈ A, then
there is some open set U such that x ∈ U ⊂ A′, which contradicts x being a limit point. So A contains all
of its limit points.

Now suppose that A contains all of its limit points, and take some x /∈ A. Since x cannot be a limit
point, there is some open set U ∈ A′ such that x ∈ U . So, A′ is open and hence A is closed.

The following are several important properties of closed sets:

Proposition 3.20. In any metric space X, the empty set ∅ and the full space X are closed sets.

Proof. The empty set has no elements, and so really contains all of its limit points, and is therefore closed.
To prove that the full space X is closed, consider that it contains all points, and so automatically contains
all of its limit points and hence is closed.
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Definition 3.21. Let (X, d) be a metric space. If x0 is a point of (X, d) and r is a positive real number,
then the closed ball Dr(x0) with centre x0 and radius r is the subset of X defined by

Dr(x0) := {x ∈ X | d(x, x0) ≤ r} (5)

Proposition 3.22. In any metric space X, each closed ball is a closed set.

Proof. Let X be a metric space with metric d. Consider an arbitrary closed ball D = Dr(x0) centred on x0

with radius r in X. The claim is equivalent to showing that D′ is open, by Definition 3.17. That is, we need
to show that for every y ∈ D′, there exists an open ball centred on y contained in D′. Since y /∈ D, then
d(x0, y) > r. So, d(x0, y)− r > 0. Define r1 = d(x0, y)− r. We claim that the open ball Br1(y) is contained
in D′. Consider any z in Br1(y). Then by the triangle inequality,

d(x0, y) ≤ d(x0, z) + d(z, y)

⇒d(x0, z) ≥ d(x0, y)− d(z, y) > d(x0, y)− r1

⇒d(x0, z) > d(x0, y)− (d(x0, y)− r) = r

⇒d(x0, z) > r.

Hence, z is not contained in D. As z and y are arbitrary points in D′, it follows that D′ is open, and so D
is closed. That is, the closed ball Dr(x0) is a closed set.

Proposition 3.23. Let X be a metric space. Then

1. Any arbitrary intersection of any collection of closed sets in X is closed.

2. The finite union of any collection of closed sets in X is closed.

Proof. To prove the above, we can use De Morgan’s Law:

Lemma 3.24. De Morgan’s Law: Let S and T be sets, and let {Ti}i∈I be a collection of subsets of T .
Then

S \
⋂
i∈I

Ti =
⋃
i∈I

(S \ Ti)

Both of these follow directly from De Morgan’s Law, Proposition 3.8, and Proposition 3.9.

Example 3.25. Every subset of the discrete space X is both open and closed.

Proof. Take any arbitrary U ⊆ R. If U = ∅ or U = R, then we are done as we have already proven that the
empty set and the full space are both open and closed for any metric space. Take any x ∈ U . Consider that
at the most extreme, U = {x} and so consider that the ball B1(x) = {x}, and hence we have found a ball
contained in U centred at x. By definition, U is open. By Definition 3.17 the complement U ′ is closed. And
as U is arbitrary, we have that all subsets of the discrete space R are both open and closed.

3.3 Continuity in Metric Spaces

We will begin with the most fundamental and intuitive definition of continuity:

Definition 3.26. Let (X, d) and (Y, ρ) be metric spaces. A map f : X → Y continuous iff for every a ∈ X
and every ε > 0 there exists a δ > 0 such that

d(x, a) < δ ⇒ ρ (f(x), f(a)) < ε. (6)
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This is equivalent to the following definition:

Definition 3.27. A map f : M1 →M2 between metric spaces is continuous at x in M1 if given any Sε(f(x))
there exists a Bδ(x) such that f(Bδ(x)) ⊂ Bε(f(x)).

Proposition 3.28. Suppose that f : M1 →M2 is a map between metric spaces. Then f is continuous ⇐⇒
for every set G open in M2, f−1(G) is open in M1.

Proof. We will proceed by proving the forwards implication, followed by the backwards implication of the
above statement:

=⇒: Suppose f : M1 →M2 is continuous, and suppose we have an open set G in M2. We wish to prove
that f−1(G) is open in M1. Take any x ∈ f−1(G). Then f(x) ∈ G. Hence, by definition of an open set,
there exists ε > 0 such that Bε(f(x)) ⊂ G. And so, by definition of continuity, there exists a δ > 0 such
that f(Bδ(x)) ⊂ Bε(f(x)). So, as Bε(f(x)) ⊂ G, then f(Bδ(x)) ⊂ G and Bδ(x) ⊂ f−1(G). Hence, f−1(G)
is open in M1.

=⇒: Now suppose that we have that, for every open set G in M2, f−1(G) is open in M1. Consider
an arbitrary point x in M1, then f(x) ∈ M2. By definition of an open set, there exists an ε > 0 such
that Bε(f(x)) is open in M2. And so by assumption, f−1(Bε(f(x))) is open in M1. But we know that
f(x) ∈ Bε(f(x)) and so x ∈ f−1(Bε(f(x))). By definition of an open set, there exists δ > 0 such that
Bδ(x) ⊂ f−1(Bε(f(x))). But this means that f(Bδ(x)) ⊂ Bε(f(x)), which is the definition of continuity.
That is, f is a continuous function.

Hence, f is continuous ⇐⇒ for every set G open in M2, f−1(G) is open in M1.

3.4 Equivalent Metrics

Definition 3.29. We say that two metrics d1 and d2 on a set X are equivalent if the identity map i :
(X, d1)→ (X, d2) is continuous, and if the map i−1 : (X, d2)→ (X, d1) is continuous.

3.5 Convergence In a Metric Space

Definition 3.30. A sequence (xn) of points in a metric space X with metric d converges to a point x in
X if given any (real number) ε > 0, there exists (an integer) N such that xn ∈ Bε(x) for all n ≥ N .

This can equivalently be written as:

Definition 3.31. A sequence (xn) of points in a metric space X with metric d converges to a point x (that
is, lim

n→∞
(xn) = x) if, given any ε > 0, there exists an integer N such that

n ≥ N ⇒ d(x, xn) < ε.

Theorem 3.32. Let X be a metric space, and let U ⊆ X. If x ∈ X is a limit point of U , then there exists
a sequence (xn) ∈ U such that lim

n→∞
xn = x.

Proof. Take any x0 ∈ U, x0 6= x. Then take some x1 ∈ U ∩ B d(x,x0)
2

, x1 6= x. We continue this process and

define xn to be some point in U ∩B d(x,xn)
2

, xn 6= x. The existence of this point is guaranteed by the definition

of a limit point. Clearly (xn) is a convergent sequence tending to x.

Theorem 3.33. Let X be a metric space and U ⊆ X. Then U is closed iff the limit of every convergent
sequence (xn) ∈ U satisfies

lim
n→∞

xn ∈ U.
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Proof. We will first prove the forwards implication and then the backwards implication:
⇒: Suppose that U 6= ∅ is closed, and suppose there exists a convergent sequence (xn) in U whose limit
converges to a point x not in U (i.e. x ∈ U ′). By definition of convergence, given any ε > 0, there exists
some N such that xn ∈ Bε(x) for all n ≥ N . We know that as U is closed, by Definition 3.17 U ′ is open. By
definition of openness, there is some ε0 > 0 such that Bε0(x) ⊆ U ′. But then there is some N such that for
all n ≥ N , xn ∈ Bε0(x), which would imply that some terms of the sequence (xn) are outside of U , which is
a contradiction.
⇐: Now suppose that the limit of every convergent sequence (xn) ∈ U satisfies lim

n→∞
xn ∈ U. Then by

Theorem 3.32, all limit points of U are contained within U . So, by Definition 3.18, U is closed.

Definition 3.34. Cauchy: A sequence (xn) in a metric space X is Cauchy if for every ε > 0 there is an
N ∈ N such that n,m ≥ N implies that d(xn, xm) < ε.

Definition 3.35. Bounded: A sequence (xn) in a metric space X is bounded if there is an M > 0 and a
b ∈ X such that d(xn, b) ≤M for all n ∈ N.

Proposition 3.36. Let X be a metric space.

1. A sequence in X can have at most one limit.

2. If xn ∈ X converges to A and (xnk
) is any subsequence of (xn), then xnk

converges to a as k →∞.

3. Every convergent sequence in X is bounded.

4. Every convergent sequence in X is Cauchy.

Proposition 3.37. Let X be a metric space and let (xn) be a Cauchy sequence. Then (xn) converges to x
iff (xn) has a subsequence that converges to x.

Proof. ⇒: This trivially follows as (xn) is a subsequence of itself that converges to x.
⇐: Suppose (xn) is a Cauchy sequence with a subsequence (xnk

) that converges to x. By definition of a
Cauchy sequence, given any ε > 0, there is an N1 ∈ N such that n,m ≥ N1 implies that d(xn, xm) < ε/2.
And as (xnk

) is a convergent subsequence, then by definition of convergence, there exists an N2 ∈ N such
that d(xnk

, x) < ε/2 for all n ≥ N2. Take N = max{N1, N2}. Then for all n ≥ N , by the triangle inequality,
d(xn, x) ≤ d(xn, xnk

) + d(xnk
, x) < ε/2 + ε/2 = ε. So, for all n ≥ N , d(xn, x) < ε and so (xn) converges to

x.

3.5.1 Uniform Convergence in Metric Spaces

The following propositions will be of use later when discussing Function Spaces.

Definition 3.38. We say that a subset U ⊂ X of a metric space X is bounded if U ⊂ Br(x) for some r > 0
and x ∈ X.

Definition 3.39. We say that a function f : X1 → X2 is bounded if f(X1) ⊂ X2 is bounded.

Definition 3.40. We say that a sequence (fn) of functions f : X1 → X2 is uniformly convergent to
a function f : X1 → X2 if for every ε > 0 there exists an N ∈ N such that m,n > N implies that
d2(fm(x), fn(x)) < ε for all x ∈ X1.

It is important to note the difference between pointwise convergence and uniform convergence. Uniform
convergence is a stronger notion. If a sequence converges uniformly, it is guaranteed to converge under the
given metric. It is possible for a sequence to converge pointwise to a point, but not converge with respect to
the particular metric. The following example demonstrates this fact.
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Example 3.41. Consider the sequence (fn), fn(x) = x
n in the metric space R with the usual metric. The

sequence is pointwise convergent to 0:

lim
n→∞

fn(x) = lim
n→∞

x

n
= x lim

n→∞

1

n
= x · 0 = 0

But (fn) is not uniformly convergent. Take ε = 1 for example. Supposing (fn) is uniformly convergent, then
there is some integer N such that m,n > N implies that | xm −

x
n | < 1. But we can take x to be arbitrarily

large and m 6= n, so this is a contradiction.

Proposition 3.42. Let (fn) be a sequence of functions fn : X1 → X2. If each fn is bounded and fn → f
uniformly, then f : X1 → X2 is bounded.

Proof. Denote the metrics associated with X1 and X2 by d1 and d2 respectively. Supposing fn is uniformly
convergent, by Definition 3.40 there exists an N ∈ N such that m,n > N implies that d2(fm(x), fn(x)) < 1
for all x ∈ X1. And supposing fn is bounded, by Definition 3.39, there exists some f(x0) ∈ X2 and some
r > 0 such that d2(fn(x), f(x0)) < r for all x ∈ X1. By the triangle inequality,

d2(f(x), f(x0)) ≤ d2(f(x), fn(x)) + d2(fn(x), f(x0)) < 1 + r.

Hence, by definition f is bounded.

Definition 3.43. We say that a sequence of functions (fn), fn : X1 → X2, is uniformly Cauchy if for every
ε > 0 there exists an N ∈ N such that m,n > N implies that d(fm(x), fn(x)) < ε for all x ∈ X1.

4 Completeness and Contraction Mappings

Definition 4.1. We say that a metric space X is complete iff every Cauchy sequence (xn) ∈ X converges
to some point in X.

It will be useful to recall the definition of a Cauchy sequence in a metric space, Definition 3.34.

Remark 4.2. R equipped with the usual metric is a complete metric space.

Proof. Let {xn} be a Cauchy sequence in R. Then {xn} is bounded, and so all are all subsequences of
{xn}. There exists a subsequence of {xn} that is monotone and bounded, and hence convergent. But if a
Cauchy sequence has a subsequence that converges to some x in R, then it too converges to x. Hence, {xn}
is convergent to some x in R.

Theorem 4.3. Let X be a complete metric space and U a subset of X. Then U (as a subspace) is complete
iff U (as a subset) is closed.

Proof. ⇒: Suppose that U is complete and take some sequence (xn) ∈ U that converges. Any convergent
sequence is a Cauchy sequence, and so (xn) is Cauchy. By assumption, if x is the limit of (xn), then x ∈ U .
By Theorem 3.33, it follows that U is closed.
⇐: Now suppose that U is a closed subset and that (xn) is Cauchy in U . Then (xn) is also Cauchy in X as
U is a subspace of X. So (xn) converges to some x in X. But by assumption, U is closed and so by Theorem
3.33, it follows that x must be in U , and so U is complete.
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5 Compactness in Metric Spaces

5.1 Basic Definition

A cover for a set X is a collection C of subsets of X such that X ⊂
⋃
λ∈Λ

Cλ. In the context of topological

spaces, we can write this definition formally as:

Definition 5.1. If (X, d) is a metric space and A ⊆ X, then a collection of subsets C of X is said to be a
cover of A if

A ⊆
⋃
λ∈Λ

Cλ

Definition 5.2. A subcover V of a given cover C for a set X is a subcollection V ⊂ C which still forms a
cover for X.

Definition 5.3. An open cover of a metric space {X, τ} is a collection {Cλ | λ ∈ Λ} of open subsets Cλ
of X such that ⋃

λ∈Λ

Cλ = X.

Remark 5.4. If a cover C is open, then a subcover V ⊂ C is also open. This is trivial.

We say that a cover is finite if C is finite.

Definition 5.5. A compact space is a metric space in which every open cover has a finite subcover. Sym-
bolically, whenever C = {Cλ | λ ∈ Λ} is an open cover, there exist λ1, λ2, ..., λn such that

X =

n⋃
j=1

Cλj
.

It is important to understand this definition well. In layman’s terms, given any open cover C of X, there
exists a finite number of the open sets in C which are enough to cover X. The key concept is that every
open cover is finite, not just (at least) one open cover is finite. The latter is trivially true, taking the
singleton collection {X} as a finite open cover.

Definition 5.6. Let X be a metric space. Then a subspace A ⊆ X is said to be compact in X iff A itself
is a compact metric space.

Proposition 5.7. Let (X, τ) be a metric space and A ⊆ X. Then A is compact iff every open cover of A
has a finite subcover.

Proof. We will first prove the forwards implication and then the backwards implication.
(⇒) Suppose that X is a metric space, A is a compact subset of X, and that {Cλ} is an open cover for X.
By definition of compactness, there exists a finite subset Λ′ ⊂ Λ such that {Cλ}λ∈Λ′ is a finite open cover
for X. Then {Cλ ∩ A}λ∈Λ′ is a finite collection of open sets whose union covers A. Thus, as the original
choice of open cover is arbitrary, we can construct finite subcovers for any open cover of a subset A and so
the forwards implication holds.
(⇐) Suppose we have a metric space X and that every open cover of a subset A of X has a finite subcover.
Take an arbitrary collection of open sets in A, {Uλ}, such that the union of the open sets equals A. Each
Uλ can be written in the form Uλ = Vλ ∩ A, where Vλ is an open set in X. It follows that Uλ ⊂ Vλ and so
{Vλ} forms an open cover for A in X. By assumption each open cover of A has a finite subcover, and so
{Vλ} has a finite subcover. Thus A is compact and the backwards implication holds.
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5.2 Properties of and Theorems Relating to Compact Spaces

Several important theorems and propositions follow from these definitions:

Theorem 5.8. Let X be a metric space, and A ⊆ X be a finite subspace. Then A is compact in X.

Proof. Suppose A is a finite subset of X. Then we can write A = {x1, x2, ..., xn}. Let C = {Ci | i ∈ I} be
an open cover of A. Then by Definition 5.1,

A ⊆
⋃
i∈I

Ci.

At most, A can be partitioned into n groups (as there are n elements), where all elements are contained in
C. So there exists a subcollection I∗ ⊆ I such that

A ⊆
⋃
i∈I∗

Ci

(where |I∗| ≤ |I|). By definition, C∗, the subset relating to I∗, defines a subcover of A. The choice of C is
arbitrary. So A is compact in X.

Remark 5.9. From the above theorem, it follows that if (X, τ) is a metric space, and X is finite, then
(X, τ) is a compact metric space.

Proposition 5.10. Let f : X → Y be a continuous map between metric spaces. If X is compact, so is
f(X).

Proof. Let Uλ be open subsets of Y which cover f(X). Then f−1(Uλ) are open sets in X which cover X.
Hence, as X is compact, there exists a finite subcover {f−1(Uλ1), ...f−1(Uλn)} in this cover of X and so
{Uλ1 , ..., Uλn} covers f(X). So f(X) is compact.

Proposition 5.11. Let X1 and X2 be topological spaces, A ⊆ X1, and f : A → X2 be a continuous map.
If A is compact in X1 then f(A) is compact in X2.

Proof. The proof of this is similar to Proposition 5.10.

Remark 5.12 (Extreme Value Theorem and Compact Spaces). One incredible result that follows from
these propositions is the Extreme Value Theorem: if f : X → R is a real valued, continuous function from a
compact space X to the real numbers R, then there is an x ∈ X such that f(x) ≥ f(y) for all y ∈ X. The
proof is as follows:

Proof. The proof of this refers to the Heine-Borel Theorem, which is proven later in this section. Since X
is compact, it follows that the image f(X) is compact in R. But by the Heine-Borel Theorem (Theorem
??), it follows that f(X) is closed and bounded. By the Completeness axiom there exists an upper bound
of f(X). Denote this upper bound M ∈ f(X). By definition of the supremum, M is a limit point of f(X),
and as f(X) is closed and therefore must contain all of its limit points, M ∈ f(X). So, there must exist an
element x ∈ X such that f(x) = M .

19



5.2.1 Compactness of [a, b]

Theorem 5.13. The real line R is not compact.

Proof. Let R be a metric space equipped with the usual euclidean metric. Consider that, for a metric space
to be compact, every open cover must admit a finite subcover. To prove that R is not compact, we will use
proof by contradiction. Consider the open cover C = {(−n, n) | n ∈ N}. Seeing that this is an open cover
is trivial. Now suppose that there is a finite subcover of C. That is, there exists N ∈ N such that (−N,N)
contains every other element of C. But take any x > N . Clearly x ∈ C, as C is a cover of R. However,
x /∈ (−N,N), and hence we have a contradiction. So, R is not compact.

Proposition 5.14. Any closed, bounded interval [a, b] in R is compact.

Proof. Suppose that [a, b] is not compact, then there exists an open cover CΛ such that [a, b] ⊂
⋃
λ∈Λ

Uλ with

no finite subcover. We can write [a, b] = [a,m1] ∪ [m1, b], where m1 = (a + b)/2 (the midpoint of a and
b). Consider that the union of two intervals with finite subcovers will itself have a finite subcover. Because
there is no finite subcover for [a, b], then for at least one of [a,m1] or [m1, b], there is no finite subcover for
the interval.

Now pick whichever interval does not have a finite subcover (or either one if both do not). Suppose this
interval is [m1, b]. Again, dividing the interval in half, by the same logic above at least one of the subintervals
will not have a finite subcover. We continue this process to obtain a sequence of closed, bounded, and
nested intervals:

[a, b] ⊃ I1 ⊃ I2 ⊃ I3...

Lemma 5.15. Consider that the intersection of closed, bounded nested intervals is non-empty

Proof. Each closed, bounded interval has a minimum and a maximum. Let (mn) be the sequence of minima
for the nested intervals, and (Mn) the sequence of maxima for the nested intervals. Observe that mn < Mn

for all n ∈ N. Therefore lim
n→∞

mn ≤ lim
n→∞

Mn. So either lim
n→∞

mn 6= lim
n→∞

Mn, in which case there exists an

interval [m,M ] contained in every interval In for all n ∈ N. Or, lim
n→∞

mn = lim
n→∞

Mn = x, in which case

there exists an x contained in every interval In for all n ∈ N. In either case, the intersection of all closed,
bounded nested intervals is non-empty.

But, there must exist an open set in our open cover containing x, Ux, by assumption. In R, open sets
are the unions of open intervals. Therefore Ux must have some open interval (µ1, µ2) containing x within it.

Consider this open interval (µ1, µ2). We wish to show that some Ik is contained within (µ1, µ2), which
would be a contradiction as this would imply that the singleton set Ux is a finite subcover for the intervals
Ik, Ik+1, .... Consider that by Lemma 5.15, there exists some x in all In, n ∈ N. Take any interval Ik, k ∈ N
such that the length of the interval |Ik| < q/2, where q = max{x− µ1, µ2 − x}. That is,

b− a
2k

< q

⇒ b− a
q

< 2k

⇒ k > log2

(
b− a
q

)
Then we are guaranteed to have an interval Ik contained within [µ1, µ2]. Then Ux is a finite subcover for all
Ij , k ≤ j ∈ N. Hence, we have a contradiction.
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5.2.2 Bolzano-Weierstrass Property and Compactness

We first recall the Bolzano-Weierstrass Theorem:

Theorem 5.16. Every bounded sequence in Rn has a convergent subsequence.

We define the Bolzano-Weierstrass Property to be the following:

Definition 5.17. A set U in a metric space has the Bolzano-Weierstrass property if every sequence in
U has a convergent subsequence.

5.3 Compactness for Metric Spaces

Theorem 5.18. Lebesgue Number Let X be a compact metric space and let {Uλ | λ ∈ Λ} be an open
cover of X. Then there exists a positive number δ > 0 known as the Lebesgue Number such that for all x
in X, Bδ(x) lies entirely inside some Uλ.

5.3.1 Uniform Continuity

Definition 5.19. A map f : X1 → X2 of metric spaces with metrics d1 and d2 is uniformly continuous
on X1 if given any ε > 0, there exists a δ > 0 such that d2(f(x), f(y)) < ε for any x, y in X1 satisfying
d1(x, y) < δ.

Note that uniform continuity is a stronger notion than continuity in metric spaces, which is defined in
Definition 3.26.Note the order of quantifiers:

Continuity: (∀ε > 0) (∀x ∈ X1) (∃δ > 0) (∀x0 ∈ X1),

dX1(x, x0) < δ ⇒ dX2(f(x), f(x0)) < ε

Uniform Continuity: (∀ε > 0) (∃δ > 0) (∀x ∈ X1) (∀x0 ∈ X1),

dX1(x, x0) < δ ⇒ dX2(f(x), f(x0)) < ε

The following example demonstrates this.

Example 5.20. Consider the map f : R→ R given by f(x) = x2, where both R are under the usual metric.
f is continuous but not uniformly continuous.

Proof. Let ε > 0. We can take δ = min
{

1, ε
1+2|x0|

}
. Assuming |x− x0| < δ, then we have that

|x2 − x2
0| = |x− x0||x+ x0|

But if |x− x0| ≤ 1, then −1 ≤ x− x0 ≤ 1⇒ −1 + 2x0 ≤ x+ x0 ≤ 1 + 2x0, and so |x+ x0| ≤ 1 + 2|x0|. So,

|x2 − x2
0| ≤|x− x0|(1 + 2|x0|)
<δ(1 + 2x0) = ε

and so f is continuous. However, f is not uniformly continuous. To prove this, suppose that f is uniformly
continuous. Let ε > 0. Then there exists some δ > 0 such that, for all x, x0 ∈ R,

|x− x0| < δ ⇒ |x2 − x2
0| < ε.

Consider ε = 1. If such a δ existed and x0 = x+ δ, then we would have that

|x2 − (x+ δ)2| <1

⇒ |2xδ + δ2| <1

Which is a contradiction, as we can choose x to be arbitrarily large. So f is not uniformly continuous.
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Proposition 5.21. If f : X1 → X2 is a continuous map of metric spaces and if X1 is compact, then f is
uniformly continuous on X1.

Proof. Let ε > 0. As f is continuous for each x in X1, there exists δ(x) > 0 such that d2(f(x), f(y)) < 1
2ε

for all y satisfying d1(x, y) < 2δ(x). The collection {Bδ(x)(x) | x ∈ X1} is an open cover for X1. By the
compactness of X1, there is a finite subcover of {Bδ(x)(x) | x ∈ X1}, {Bδ(x)(x1), Bδ(x2)(x), ..., Bδ(x)(xn)}.
Let δ = min{δ(x1), δ(x2), ..., δ(xn)}. Given any x, y ∈ X1 satisfying d1(x, y) < δ, (1) there is some i in
1, 2, ..., r such that d(x, xi) < δ(xi), and then (2) d1(y, xi) ≤ d1(y, x) + d1(x, xi) < δ + δ(xi) < 2δ.

Now by (1), d2(f(x), f(xi)) <
1
2ε, and by (2), d2(f(y), f(xi) <

1
2ε, and so

d2(f(x), f(y)) ≤ d2(f(x), f(xi)) + d2(f(xi), f(y)) <
1

2
ε+

1

2
ε = ε

as required.

Remark 5.22. Compactness is NOT a necessary condition for uniform continuity. Consider any metric
space X1 and the identity map i : X1 → X1. This is a uniformly continuous map that does not depend on
X1 being compact.

6 Fourier Series
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